To the content
4 . 2020

Nutrition and orphan diseases

Abstract

Diagnosis and treatment of orphan (rare) diseases is an important problem of modern pediatrics due to multivarious clinical signs and severe course of this pathology. Orphan diseases are associated with accumulation, absence or insufficient synthesis of one or several metabolites in the organism. The absence of early diagnostics and treatment of patients with such diseases leads to bad prognosis. A diet is the main treatment method of many orphan diseases. A diet must be personalized and base on thorough examination of nutritional status. Individual diet therapy promotes an improvement of patient's status and enhances an effect of other forms of treatment for compensation of metabolic disorders, decrease of complication risk and increase of life quality. The article summarizes the experience of treatment of children with orphan diseases in the Department of Pediatric Gastroenterology, Hepatology and Nutrition of Federal Research Centre for Nutrition, Biotechnology and Food Safety. 444 patients with inherited disorders of carbohydrate metabolism, lipid metabolism and more rare diseases (tyrosinemia, lysosomal acid lipase deficit, fructosemia, urea cycle disturbances, α1-antitrypsine insufficiency etc.) have been evaluated in the Department since 2008. The results of the examination and treatment of children with glycogen storage diseases (n=131), fructosemia (n=18), inherited disturbances of lipid metabolism (n=118) and other rare diseases are represented in the paper. The monitoring of nutritional status can help to correct therapy depending on character and severity of pathological process for benign course of the disease.

Keywords:orphan diseases, diet therapy, glycogen storage disease, nutritional status

Funding. The research was carried out at the expense of the subsidy for the implementation of the state task.

Conflict of interests. The authors declare no conflict of interests.

Acknowledgements. Authors are grateful to staff of Research Centre for Medical Genetics and Hereditary Metabolic Diseases Laboratory for support in genetic evaluation of patients with orphan pathology.

For citation: Strokova T.V., Bagaeva M.E., Zubovich A.I., Pavlovskaya E.V., Taran N.N., Tin I.F., Matinyan I.A., Dremucheva Т.А., Kutyreva Е.А., Vasil'eva E.A. Nutrition and orphan diseases. Voprosy pitaniia [Problems of Nutrition]. 2020; 89 (4): 193–202. DOI: https://doi.org/10.24411/0042-8833-2020-10053 (in Russian)

References

1. Brown L.M., Corrado M.M., van der Ende R.M., Derks T.G., Chen M.A., Siegel S., et al. Evaluation of glycogen storage disease as a cause of ketotic hypoglycemia in children. J Inherit Metab Dis. 2015; 38 (3): 489–93. DOI: http://doi.org/10.1007/s10545-014-9744-1

2. Sim S.W., Weinstein D.A., Lee Y.M., Jun H.S. Glycogen storage disease type Ib: role of glucose-6-phosphate transporter in cell metabolism and function. FEBS Lett. 2020; 594 (1): 3–18. DOI: http://doi.org/10.1002/1873-3468.13666

3. Santos B.L., de Souza C.F., Schuler-Faccini L., Refosco L., Epifanio M., Nalin T., et al. Glycogen storage disease type I: clinical and laboratory profile. J Pediatr (Rio J). 2014; 90 (6): 572–9. DOI: http://doi.org/10.1016/j.jped.2014.02.005

4. Zhurkova N.V., Strokova T.V., Zaynudinov Z.M. Inherited metabolic liver diseases. In: B.S. Kaganov (ed.). Pediatric Hepatology. Moscow: Dinastiya, 2009: 320–3. (in Russian)

5. Kaiser N., Gautschi M., Bosanska L., et al. Glycemic control and complications in glycogen storage disease type I: Results from the Swiss registry. Mol Genet Metab. 2019; 126 (4): 355–61. DOI: http://doi.org/10.1016/j.ymgme.2019.02.008

6. Kanungo Sh., Wells K., Tribett T., El-Gharbawy A. Glycogen metabolism and glycogen storage disorders. Ann Transl Med. 2018; 6 (24): 474. DOI: http://doi.org/10.21037/atm.2018.10.59

7. Izmaylova T.D., Surkov A.N. Mitochondrial dysfunction in children with hepatic forms of glycogen storage disease. Vestnik Rossiyskoy akademii meditsinskikh nauk [Bulletin of the RussianAcademy of Medical Sciences]. 2014; 69 (7–8): 78–84. DOI: http://doi.org/10.15690/vramn.v69i7-8.1112 (in Russian)

8. Farah B.L., Sinha R.A., Wu Y., Singh B.K., Lim A., Hirayama M., et al. Hepatic mitochondrial dysfunction is a feature of Glycogen Storage Disease Type Ia (GSDIa). Sci Rep. 2017; 7: 44408. DOI: http://doi.org/10.1038/srep44408

9. Strokova T.V., Machulan I.V., Kutyreva E.N., Vorozhko I.V., Kaganov B.S., Dvoryakovskaya G.M. Glycogen-storage disease type 1: clinical and laboratory manifestations in infants and children. Doctor.ru. 2013; (9): 76–81. eLIBRARY ID: 20957711. (in Russian)

10. Prokhorova I.V., Strokova T.V., Bagaeva M.E., Surkov A.G., Pavlovskaya E.V., Taran N.N., et al. Specificities of nutritional status in patients with liver forms of glycogen storage disease. Voprosy detskoy dietologii [Problems of Pediatric Nutrition]. 2018: 16 (6): 5–15. DOI: http://doi.org/10.20953/1727-5784-2018-6-5-15 (in Russian)

11. Prokhorova I.V., Strokova T.V., Kodentsova V.M., Surkov A.G., Bagaeva M.E., Pavlovskaya E.V., et al. Vitamin status in children with hepatic forms of glycogen storage disease. RMJ 2019; 27 (5): 13–19. eLIBRARY ID: 38712202. (in Russian)

12. Strokova T.V., Prokhorova I.V., Surkov A.G., Bagaeva M.E., Pavlovskaya E.V., Taran N.N., et al. Continuous glucose monitoring in children with glycogenosis. Al’manakh klinicheskoy meditsiny [Almanac of Clinical Medicine]. 2017; 45 (1): 23–32. DOI: http://doi.org/10.18786/2072-0505-2017-45-1-23-32 (in Russian)

13. Wolfsdorf J.I., Weinstein D.A. Glycogen storage diseases. Rev Endocr Metab Disord. 2003; 4: 95–102. DOI: http://doi.org/10.1023/a:1021831621210

14. Brambilla A., Mannarino S., Pretese R., Gasperini S., Galimberti C., Parini R. Improvement of Cardiomyopathy after high-fat diet in two siblings with glycogen storage disease type III. JIMD Rep. 2014; 17: 91–5. DOI: http://doi.org/10.1007/8904_2014_343

15. Valayannopoulos V., Bajolle F., Arnoux J., et al. Successful treatment of severe cardiomyopathy in glycogen storage disease type III with D, L-3-hydroxybutyrate, ketogenic and high-protein diet. Pediatr Res. 2011; 70: 638–41. DOI: http://doi.org/10.1203/PDR.0b013e318232154f

16. Rossi A., Hoogeveen I.J., Bastek V.B., et al. Dietary lipids in glycogen storage disease type III: A systematic literature study, case studies, and future recommendations. J Inherit Metab Dis. 2020; 43 (4): 770–7. DOI: http://doi.org/10.1002/jimd.12224.doi:10.1002/jimd.12224

17. El-Gharbawy A.H., Arnold G.L., Perrott-Taylor N., Hughley T., Long K., Vockley J., et al. Optimizing metabolic control of glycogen storage disease type 3 (Gsd3): potential role for medium chain triglycerides (Mct). Mol Genet Metab. 2014; 111: 284–5.

18. Francini-Pesenti F., Tresso S., Vitturi N. Modified Atkins ketogenic diet improves heart and skeletal muscle function in glycogen storage disease type III. Acta Myol. 2019; 38 (1): 17–20. Published 2019 Mar 1. PMID: 31309177 PMCID: PMC6598403

19. Derks T.G., van Rijn M. Lipids in hepatic glycogen storage diseases: pathophysiology, monitoring of dietary management and future directions. J Inherit Metab Dis. 2015; 38 (3): 537–43. DOI: http://doi.org/10.1007/s10545-015-9811-2.

20. Weinstein D.A., Wolfsdorf J.I. Effect of continuous glucose therapy with uncooked cornstarch on the long-term clinical course of type 1a glycogen storage disease. Eur J Pediatr. 2002; 161: S35–9. DOI: http://doi.org/10.1007/s00431-002-1000-2

21. Ben Chehida A., Ben Messaoud S., Ben Abdelaziz R., et al. A lower energetic, protein and uncooked cornstarch intake is associated with a more severe outcome in glycogen storage disease type III: an observational study of 50 patients. J Pediatr Endocrinol Metab. 2018; 31 (9): 979–86. DOI: http://doi.org/10.1515/jpem-2018-0151

22. Kishnani P.S., Austin S.L., Abdenur J.E., Arn P., Bali D.S., Boney A., et al. Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics. Genet Med. 2014; 16 (11): e1. DOI: http://doi.org/10.1038/gim.2014.128

23. James S.P., Rellos P., Ali M. Neonatal screening for hereditary fructose intolerance: frequency of the most common mutant aldolase B allele (A149P) in British population. J Med Genet. 1996; 33: 837–41. DOI: http://doi.org/10.1136/jmg.33.10.837

24. Clinical Recommendations: Inherited tyrosinemia 1 type in children. In: A.A. Baranov AA. Soyuz Pediatrov Russii, 2016: 18 p. (in Russian)

25. Namazova-Baranova L.S., Polyakova S.I., Borovik T.E., Bushuyeva T.V., Varichkina M.A., Gevorkyan A.K. A 7-year experience of therapy with nitisinone of hereditary type 1 tyrosinemia in Russia. Effektivnaya farmakoterapiya [Effective Pharmacotherapy]. 2015 (3): 24–31. eLIBRARY ID: 23239350. (in Russian)

26. de Laet C., Dionisi-Vici C., Leonard J.V., McKiernan P., Mitchell G., Monti L., et al. Recommendations for the management of tyrosinaemia type 1. Orphanet J Rare Dis. 2013; 8: 8. doi: DOI: http://doi.org/10.1186/1750-1172-8-8

27. Obvious medical biochemistry. In: E.S. Severin (ed.). 3rd ed. Moscow: GEOTAR-Media, 2018: 164 p. (in Russian)

28. Russian recommendation on diagnosis and treatment of familial hypercholesterolemia. Moscow, 2017. (in Russian)

29. Bliznyuk S.A., Chubykina U.V., Ezhov M.V. Family hypercholesterolemia in children and adolescents: features of diagnosis and treatment. Pediatriya. Prilozhenie k zhurnalu Consilium Medicum [Pediatrics – Suppl. Consilium Medicum], 2017; (4): 71–3. eLIBRARY ID: 32303535. (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»