To the content
4 . 2020

Cardiovascular nutrition: disease management and prevention as major public health problem nowadays

Abstract

Cardiovascular disease (CVD) is the leading cause of death in many developed countries. At the same time, nutrition is the basis of preventive cardiology. Earlier researches were focused on the importance of individual nutrients, including saturated fats, sodium, and dietary fiber, or certain foods, such as fruits, vegetables, fish, and olive oil, in the development of CVD. Recently, however, an analysis of nutritional patterns has been preferred to take into account the heterogeneity of the diet and the interaction of foods and nutrients. Besides, studies of the cardioprotective potential of bioactive compounds, e.g. polyphenols, peptides, oligosaccharides, vitamins, mono- and polyunsaturated fatty acids, are of particular interest. This paper covers dietary patterns that are associated with improved cardiovascular outcomes, including the Mediterranean diet. The use of a pattern-based approach will help practitioners make optimal and meaningful changes to the patients’ diet. Personalized diet therapy is also very important, which implies flexibility and tailoring guidelines to patient needs and comorbidities.

Keywords:cardiovascular disease, nutrients, Mediterranean diet, polyphenols, PUFA, bioactive compounds

Funding. The research was carried out at the expense of the subsidy for the implementation of the state task (topic numbers 0529-2018-0113; 05292019-0062).

Conflict of interests. The authors declare no conflict of interests.

For citation: Starodubova A.V., Livantsova E.N., Derbeneva S.A., Kosyura S.D., Polenova N.V., Varaeva Yu.R. Cardiovascular nutrition: disease management and prevention as major public health problem nowadays. Voprosy pitaniia [Problems of Nutrition]. 2020; 89 (4): 146-60. DOI: https://doi.org/10.24411/0042-8833-2020-1004 (in Russian)

References

1. International Diabetes Federation. IDF Diabetes Atlas. 8th ed., 2017. URL: http://www.diabetesatlas.org

2. WHO. Cardiovascular Diseases (CVDs). Geneva, Switzerland: World Health Organization, 2017. URL: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

3. Healthcare development strategy in the Russian Federation for the period until 2025. Decree of the President of the Russian Federation of June 6, 2019 No. 254. Moscow, 2019. (in Russian)

4. Russia in numbers 2019. A brief statistical compilation. Moscow: Rosstat, 2019. (in Russian)

5. Salehi-Abargouei A., Maghsoudi Z., Shirani F., et al. Effects of Dietary Approaches to Stop Hypertension (DASH)-style diet on fatal or nonfatal cardiovascular diseases – incidence: a systematic review and meta-analysis on observational prospective studies. Nutrition. 2013; 29: 611–8. DOI: https://doi.org/10.1016/j.nut.2012.12.018

6. Chiavaroli L., Viguiliouk E., Nishi S.K., et al. DASH dietary pattern and cardiometabolic outcomes: an umbrella review of systematic reviews and meta-analyses. Nutrients. 2019; 11 (2): E338. DOI: https://doi.org/10.3390/nu11020338

7. Lin J.S., O’Connor E.A., Evans C.V., et al. U.S. Preventive Services Task Force Evidence Syntheses, formerly Systematic Evidence Reviews, Behavioral Counseling to Promote a Healthy Lifestyle for Cardiovascular Disease Prevention in Persons with Cardiovascular Risk Factors: An Updated Systematic Evidence Review for the U.S. Preventive Services Task Force. Rockville, MD: Agency for Healthcare Research and Quality (US), 2014. Report No. 13-05179-EF-1. DOI: https://doi.org/10.7326/m14-0130

8. Chiavaroli L., Nishi S.K., Khan T.A., et al. Portfolio dietary pattern and cardiovascular disease: a systematic review and meta-analysis of controlled trials. Prog Cardiovasc Dis. 2018; 61: 43–53. DOI: https://doi.org/10.1016/j.pcad.2018.05.004

9. Feng Q., Fan S., Wu Y., Zhou D., Zhao R., Liu M., et al. Adherence to the dietary approaches to stop hypertension diet and risk of stroke. Medicine. 2018; 97: e12450. DOI: https://doi.org/10.1097/md.0000000000012450

10. Reedy J., Krebs-Smith S.M., Miller P.E., et al. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J Nutr. 2014; 144: 881–9. DOI: https://doi.org/10.3945/jn.113.189407

11. Schwingshackl L., Bogensberger B., Hoffmann G. Diet quality as assessed by the healthy eating index, alternate healthy eating index, dietary approaches to stop hypertension score, and health outcomes: an updated systematic review and meta-analysis of cohort studies. J Acad Nutr Diet. 2018; 118: 74–100. DOI: https://doi.org/10.1016/j.jand.2017.08.024

12. Liese A.D., Krebs-Smith S.M., Subar A.F., et al. The dietary patterns methods project: synthesis of findings across cohorts and relevance to dietary guidance. J Nutr. 2015; 145: 393–402. DOI: https://doi.org/10.3945/jn.114.205336

13. World health Organization. Global atlas on cardiovascular disease prevention and control, 2011. URL: https://www.who.int/cardiovascular_diseases/publications/atlas_cvd/en/

14. Hu F.B. Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol. 2002; 13: 3–9. DOI: https://doi.org/10.1097/00041433-200202000-00002

15. Chen C.Y., Milbury P.E., Lapsley K., Blumberg J.B. Flavonoids from almond skins are bioavailable and act synergistically with vitamins C and E to enhance hamster and human LDL resistance to oxidation. J Nutr. 2005; 135: 1366–73. DOI: https://doi.org/10.1093/jn/135.6.1366

16. Hattori Y., Jojima T., Tomizawa A., Satoh H., Hattori S., Kasai K., et al. A glucagon-like peptide-1 (GLP-1) analogue, liraglutide, upregulates nitric oxide production and exerts anti-inflammatory action in endothelial cells. Diabetologia. 2010; 53:2256–63. DOI: https://doi.org/10.1007/s00125-010-1831-8

17. Esmeijer K., Geleijnse J.M., de Fijter J.W., et al. Dietary protein intake and kidney function decline after myocardial infarction: the alpha omega cohort. Nephrol Dial Transplant. 2020; 35 (1): 106–15. DOI: https://doi.org/10.1093/ndt/gfz015

18. Virtanen H.E.K., Voutilainen S., Koskinen T.T., et al. Dietary proteins and protein sources and risk of death: the Kuopio ischaemic heart disease risk factor study. Am J Clin Nutr. 2019; 109: 1462–71. URL: https://doi.org/10.1093/ajcn/nqz025

19. Lagiou P., Sandin S., Lof M., Trichopoulos D., Adami H.O., Weiderpass E. Low carbohydrate-high protein diet and incidence of cardiovascular diseases in Swedish women: prospective cohort study. BMJ. 2012; 344: e4026. DOI: https://doi.org/10.1136/bmj.e4026

20. Fung T.T., van Dam R.M., Hankinson S.E., Stampfer M., Willett W.C., Hu F.B. Low-carbohydrate diets and all-cause and cause-specific mortality: two cohort studies. Ann Intern Med. 2010; 153: 289–98. DOI: https://doi.org/10.7326/0003-4819-153-5-201009070-00003

21. O’Connor L.E., Paddon-Jones D., Wright A.J., et al. A Mediterranean-style eating pattern with lean, unprocessed red meat has cardiometabolic benefis for adults who are overweight or obese in a randomized, crossover, controlled feeding trial. Am J Clin Nutr. 2018; 108: 33–40. DOI https://doi.org/10.1093/ajcn/nqy075

22. Guasch-Ferré M., Satija A., Blondin S.A., et al. Meta-analysis of randomized controlled trials of red meat consumption in comparison with various comparison diets on cardiovascular risk factors. Circulation. 2019; 139: 1828–45. DOI: https://doi.org/10.1161/circulationaha.118.035225

23. Franzke B., Neubauer O., Cameron-Smith D., et al. Dietary protein, muscle and physical function in the very old. Nutrients. 2018; 10: 935. DOI: https://doi.org/10.3390/nu10070935

24. Mente A., de Koning L., Shannon H.S., Anand S.S. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med. 2009; 169: 659–69. DOI: https://doi.org/10.1001/archinternmed.2009.38

25. Fan J., Song Y., Wang Y., Hui R., Zhang W. Dietary glycemic index, glycemic load, and risk of coronary heart disease, stroke, and stroke mortality: a systematic review with meta-analysis. PLoS One. 2012;. 7: e52182. https://doi.org/10.1371/journal.pone.0052182

26. Livesey G., Livesey H. Coronary heart disease and dietary carbohydrate, glycemic index, and glycemic load: dose-response meta-analyses of prospective cohort studies. Mayo Clin Proc Innov Qual Outcomes. 2019; 3 (1): 52–69. DOI: https://doi.org/10.1016/j.mayocpiqo.2018.12.007

27. Dong J.Y., Zhang Y.H., Wang P., Qin L.Q. Meta-analysis of dietary glycemic load and glycemic index in relation to risk of coronary heart disease. Am J Cardiol. 2012; 109: 1608–13. DOI: https://doi.org/10.1016/j.amjcard.2012.01.385

28. Mursu J., Virtanen J.K., Rissanen T.H., Tuomainen T.P., Nykänen I., Laukkanen J.A., et al. Glycemic index, glycemic load, and the risk of acute myocardial infarction in Finnish men: the Kuopio Ischaemic Heart Disease Risk Factor Study. Nutr Metab Cardiovasc Dis. 2011; 21: 144–9. DOI:https://doi.org/10.1016/j.numecd.2009.08.001

29. Bhupathiraju S.N., Tobias D.K., Malik V.S., Pan A., Hruby A., Manson J.E., et al. Glycemic index, glycemic load, and risk of type 2 diabetes: results from 3 large US cohorts and an updated meta-analysis. Am J Clin Nutr. 2014; 100: 218–32. DOI: https://doi.org/10.3945/ajcn.113.079533

30. Dehghan M., Mente A., Zhang X., et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (pure): a prospective cohort study. Lancet. 2017; 390: 2050–62. DOI:http://dx.doi.org/10.1016/S0140-6736(17)32252-3

31. Seidelmann S.B., Claggett B., Cheng S., et al. Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. Lancet Public Health. 2018; 3: e419–28. DOI: https://doi.org/10.1016/s2468-2667(18)30135-x

32. Li S., Flint A., Pai J.K., et al. Low carbohydrate diet from plant or animal sources and mortality among myocardial infarction survivors. J Am Heart Assoc. 2014; 3: e001169. URL: https://doi.org/10.1161/jaha.114.001169

33. Li S., Flint A., Pai J.K., et al. Dietary fiber intake and mortality among survivors of myocardial infarction: prospective cohort study. BMJ. 2014; 348: g2659. https://doi.org/10.1136/bmj.g2659

34. Kelly S.A., Hartley L., Loveman E., et al. Whole grain cereals for the primary or secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2017; 8: CD005051. DOI: https://doi.org/10.1002/14651858.cd005051.pub3

35. Hooper L., Martin N., Abdelhamid A., et al. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev. 2015; 6: CD011737. DOI: https://doi.org/10.1002/14651858.cd011737

36. Zhuang P., Zhang Y., He W., et al. Dietary fats in relation to total and cause-specific mortality in a prospective cohort of 521 120 individuals with 16 years of follow-up. Circ Res. 2019; 124: 757–68. DOI: https://doi.org/10.1161/circresaha.118.314038

37. Salehi B., Lopez-Jornet P., Pons-Fuster López E., Calina D., Sharifi-Rad M., Ramirez-Alarcón K., et al. Plant-derived bioactives in oral mucosal lesions: a key emphasis to curcumin, lycopene, chamomile, aloe vera, green tea and coffee properties. Biomolecules. 2019; 9: 106. DOI: https://doi.org/10.3390/biom9030106

38. Martínez-González M.A., Fernández-Jarne E., Serrano-Martínez M., Wright M., Gomez-Gracia E. Development of a short dietary intake questionnaire for the quantitative estimation of adherence to a cardioprotective Mediterranean diet. Eur J Clin Nutr. 2004;58: 1550–52. DOI: https://doi.org/10.1038/sj.ejcn.1602004

39. Stull A., Cash K., Champagne C., Gupta A., Boston R., Beyl R., et al. Blueberries improve endothelial function, but not blood pressure, in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial. Nutrients. 2015; 7:4107–23. DOI: https://doi.org/10.3390/nu7064107

40. Basu A., Du M., Leyva M.J., Sanchez K., Betts N.M., Wu M., et al. Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J Nutr. 2010; 140: 1582–7. DOI: https://doi.org/10.3945/jn.110.124701

41. Goszcz K., Duthie G.G., Stewart D., Leslie S.J., Megson I.L. Bioactive polyphenols and cardiovascular disease: chemical antagonists, pharmacological agents or xenobiotics that drive an adaptive response? Br J Pharmacol. 2017; 174: 1209–25. DOI:https://doi.org/10.1111/bph.13708

42. Wallace T.C. Anthocyanins in cardiovascular disease. Adv Nutr. 2011; 2: 1–7. DOI: https://doi.org/10.3945/an.110.000042

43. Tresserra-Rimbau A., Rimm E.B., Medina-Remón A., Marínez-González M.A., de la Torre R., Corella D., et al. Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutr Metab Cardiovasc Dis. 2014; 24: 639–47. DOI: https://doi.org/10.1016/j.numecd.2013.12.014

44. Chao S.C., Chen Y.J., Huang K.H., Kuo K.L., Yang T.H., Huang K.Y., et al. Induction of sirtuin-1 signaling by resveratrol induces human chondrosarcoma cell apoptosis and exhibits antitumor activity. Sci Rep. 2017; 7: 3180. DOI: https://doi.org/10.1038/s41598-017-03635-7

45. Artero A., Artero A., Tarín J.J., Cano A. The impact of moderate wine consumption on health. Maturitas. 2015; 80: 3–13. DOI: https://doi.org/10.1016/j.maturitas.2014.09.007

46. Borriello A., Cucciolla V., Della Ragione F., Galletti P. Dietary polyphenols: focus on resveratrol, a promising agent in the prevention of cardiovascular diseases and control of glucose homeostasis. Nutr Metab Cardiovasc Dis. 2010; 20: 618–25. DOI: https://doi.org/10.1016/j.numecd.2010.07.004

47. Zordoky B.N.M., Robertson I.M., Dyck J.R.B. Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochem Biophys Acta. 2015; 1852:1155–77. DOI: https://doi.org/10.1016/j.bbadis.2014.10.016

48. Asgary S., Sahebkar A., Afshani M.R., Keshvari M., Haghjooyjavanmard S., Rafieian-Kopaei M. Clinical evaluation of blood pressure lowering, endothelial function improving, hypolipidemic and anti-inflammatory effects of pomegranate juice in hypertensive subjects. Phytother Res. 2014; 28: 193–9. DOI: https://doi.org/10.1002/ptr.4977

49. Dohadwala M.M., Holbrook M., Hamburg N.M., Shenouda S.M., Chung W.B., Titas M., et al. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease. Am J Clin Nutr. 2011; 93; 934–40. DOI: https://doi.org/10.3945/ajcn.110.004242

50. Investigators G.-P. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet. 1999;354: 447–55. DOI: https://doi.org/10.1016/s0140-6736(99)07072-5

51. Yokoyama M., Origasa H., Matsuzaki M., Matsuzawa Y., Saito Y., Ishikawa Y., et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369: 1090–8. DOI: https://doi.org/10.1016/s0140-6736(07)60527-3

52. Rauch B., Schiele R., Schneider S., Diller F., Victor N., Gohlke H., et al. OMEGA, a randomized, placebo-controlled trial to test the effect of highly purified omega-3 fatty acids on top of modern guideline-adjusted therapy after myocardial infarction. Circulation. 2010; 122: 2152–9. DOI:https://doi.org/10.1161/circulationaha.110.948562

53. ORIGIN Trial Investigators. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N Engl J Med. 2012; 367;309–18. DOI: https://doi.org/10.1056/nejmoa1203859

54. Group A.S.C. Effects of aspirin for primary prevention in persons with diabetes mellitus. N Engl J Med. 2018; 379: 1529–39. DOI: https://doi.org/10.1056/nejmoa1804988

55. Manson J.E., Bassuk S.S., Lee I.M., Cook N.R., Albert M.A., Gordon D., et al. The VITamin D and OmegA-3 TriaL (VITAL): Rationale and design of a large randomized controlled trial of vitamin D and marine omega-3 fatty acid supplements for the primary prevention of cancer and cardiovascular disease. Contemp Clin Trials. 2012; 33: 159–71. DOI: https://doi.org/10.1016/j.cct.2011.09.009

56. Keaney J.F., Rosen C.J. VITAL signs for dietary supplementation to prevent cancer and heart disease. N Engl J Med. 2019; 380:91–3. DOI: https://doi.org/10.1056/nejme1814933

57. Abedi E., Mohammad A.S. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci Nutr. 2014; 2: 443–63. DOI:https://doi.org/10.1002/fsn3.121

58. Roncaglioni M.C., Tombesi M., Avanzini F., Barlera S., Caimi V., Longoni P., et al. n-3 fatty acids in patients with multiple cardiovascular risk factors. N Engl J Med. 2013; 368: 1800. DOI: https://doi.org/10.1056/nejmoa1205409

59. Kwak S.M., Myung S.K., Lee Y.J., Seo H.G.; Korean Meta-analysis Study Group. Efficacy of omega-3 fatty acid supplements (eicosapentaenoic acid and docosahexaenoic acid) in the secondary prevention of cardiovascular disease: a meta-analysis of randomized, double-blind, placebo-controlled trials. Arch Intern Med. 2012; 172: 686–94. DOI: https://doi.org/10.1001/archinternmed.2012.262

60. Aung T., Halsey J., Kromhout D., et al. Associations of omega-3 fatty acid supplement use with cardiovascular disease risks: meta-analysis of 10 trials involving 77 917 individuals. JAMA Cardiol. 2018; 3: 225–33. DOI: https://doi.org/10.1001/jamacardio.2017.5205

61. Bhatt D.L., Steg P.G., Miller M., et al. Effects of icosapent ethyl on total ischemic events. J Am Coll Cardiol. 2019; 73: 2791–802. DOI: https://doi.org/10.1016/j.jacc.2019.02.032

62. Hooper L., Al-Khudairy L., Abdelhamid A.S., et al. Omega-6 fats for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018; 11: CD011094. DOI: https://doi.org/10.1002/14651858.cd011094.pub3

63. Bhupathiraju S.N., Tucker K.L. Coronary heart disease prevention: nutrients, foods, and dietary patterns. Clin Chim Acta. 2011; 412: 1493–514. DOI: https://doi.org/10.1016/j.cca.2011.04.038

64. Schwingshackl L., Chaimani A., Schwedhelm C., Toledo E., Pünsch M., Hoffmann G., et al. Comparative effects of different dietary approaches on blood pressure in hypertensive and pre-hypertensive patients: a systematic review and network meta-analysis. Crit Rev Food Sci Nutr. 2019; 59 (16): 2674–87. DOI: https://doi.org/10.1080/10408398.2018.1463967

65. Parikh A., Lipsitz S.R., Natarajan S. Association between a DASH-like diet and mortality in adults with hypertension: findings from a population-based follow-up study. Am J Hypertens. 2009; 22: 409–16. DOI:https://doi.org/10.1038/ajh.2009.10

66. Folsom A.R., Parker E.D., Harnack L.J. Degree of concordance with DASH diet guidelines and incidence of hypertension and fatal cardiovascular disease. Am J Hypertens. 2007; 20: 225–32. DOI: https://doi.org/10.1016/j.amjhyper.2006.09.003

67. Fung T.T., Chiuve S.E., McCullough M.L., et al. Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch Intern Med. 2008; 168: 713–20. DOI: https://doi.org/10.1001/archinte.168.7.713

68. Agnoli C., Krogh V., Grioni S., et al. A priori-defined dietary patterns are associated with reduced risk of stroke in a large Italian cohort. J Nutr. 2011; 141: 1552–8. DOI: https://doi.org/10.3945/jn.111.140061

69. Levitan E.B., Wolk A., Mittleman M.A. Relation of consistency with the dietary approaches to stop hypertension diet and incidence of heart failure in men aged 45 to 79 years. Am J Cardiol. 2009; 104: 1416–20. DOI: https://doi.org/10.1016/j.amjcard.2009.06.061

70. Levitan E.B., Wolk A., Mittleman M.A. Consistency with the DASH diet and incidence of heart failure. Arch Intern Med. 2009; 169: 851–7. DOI: https://doi.org/10.1001/archinternmed.2009.56

71. Azadbakht L., Fard N.R., Karimi M., et al. Effects of the Dietary Approaches to Stop Hypertension (DASH) eating plan on cardiovascular risks among type 2 diabetic patients: a randomized crossover clinical trial. Diabetes Care. 2011; 34: 55–7. DOI: https://doi.org/10.2337/dc10-0676

72. Blumenthal J.A., Babyak M.A., Sherwood A., et al. Effects of the dietary approaches to stop hypertension diet alone and in combination with exercise and caloric restriction on insulin sensitivity and lipids. Hypertension. 2010; 55: 1199–205. DOI: https://doi.org/10.1161/hypertensionaha.109.149153

73. Shirani F., Salehi-Abargouei A., Azadbakht L. Effects of Dietary Approaches to Stop Hypertension (DASH) diet on some risk for developing type 2 diabetes: a systematic review and meta-analysis on controlled clinical trials. Nutrition. 2013; 29: 939–47. DOI: https://doi.org/10.1016/j.nut.2012.12.021

74. Sofi F., Macchi C., Abbate R., et al. Mediterranean diet and health status: an updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2014; 17: 2769–82. DO: https://doi.org/10.1017/s1368980013003169

75. Eleftheriou D., Benetou V., Trichopoulou A., et al. Mediterranean diet and its components in relation to all-cause mortality: meta-analysis. Br J Nutr. 2018; 120: 1081–97. DOI: https://doi.org/10.1017/s0007114518002593

76. Kastorini C.M., Milionis H.J., Esposito K., et al. The effect of Mediterranean diet on metabolic syndrome and its components: a meta-analysis of 50 studies and 534,906 individuals. J Am Coll Cardiol. 2011; 57: 1299–313. DOI: https://doi.org/10.1016/j.jacc.2010.09.073

77. Rosato V., Temple N.J., La Vecchia C., et al. Mediterranean diet and cardiovascular disease: a systematic review and meta-analysis of observational studies. Eur J Nutr. 2019; 58: 173–91. DOI: https://doi.org/10.1007/s00394-017-1582-0

78. Whalen K.A., Judd S., McCullough M.L., et al. Paleolithic and Mediterranean diet pattern are inversely associated with all-cause and cause-specific mortality in adults. J Nutr. 2017; 147: 612–20. DOI: https://doi.org/10.3945/jn.116.241919

79. Grosso G., Marventano S., Yang J., et al. A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: are individual components equal? Crit Rev Food Sci Nutr. 2017; 57: 3218–32. DOI: https://doi.org/10.1080/10408398.2015.1107021

80. Estruch R., Ros E., Salas-Salvadó J., et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013; 368 (14): 1279–90. DOI: https://doi.org/10.1056/NEJMoa1200303

81. Estruch R., Ros E., Salas-Salvadó J., et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018; 378: e34(1)–(14). DOI: https://doi.org/10.1056/nejmoa1800389

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»