To the content
4 . 2020

Gut microbiome: from the reference of the norm to pathology

Abstract

А systemic assessment of the state of the human intestinal microbiome was carried out in relation to its function in the macroorganism, aimed at providing the nutriome, and the factors that determine the adequate nutritional status. A new concept of “reference gut microbiome of a healthy person” was postulated and the requirements to it were formulated: interaction with the host according to the principle of mutualism, provision of immune balance with the macroorganism due to the correct formation of mucosal immunity, implementation of metabolic and regulatory functions without losses for the nutriome. A set of characteristics and biomarkers reflecting the taxonomic composition and population properties of the microbial community, as well as the state of its essential immune and metabolic functions, was proposed as a criterion for its assessment in healthy adults who consume a diet balanced in nutritive and energy value, appropriate for age and energy spending. The influence of alimentary factors on the formation of the human intestinal microbiome in early ontogenesis, the nature of dysbiotic shifts, including those under common non-infectious alimentary-dependent diseases (obesity, food allergy, urolithiasis), in Russians were studied, the ways of their correction and maintenance of the intestinal microbiota in the process of life were substantiated taking into account modern knowledge.

Keywords:gut microbiota, dysbiosis, short-chain fatty acids, reference gut microbiome, nutriome, nutritional correction of the gut microbiome, alimentary-dependent diseases

Funding. Research work was carried out at the expense of a grant for the performance of a state task within the framework of the program of Fundamental scientific research of the Presidium of the Russian Academy of Sciences (topic 529-2018-0111 “Development of optimal nutrition formula: substantiation of the composition of the human nutriome and microbiome”).

Conflict of interests. The authors declare no conflict of interests.

Acknowledgments. The authors express their gratitude to the head of the laboratory of age-related nutritional science E.A. Pyryeva and heads of the clinical departments of the Federal Research Center for Nutrition, Biotechnology and Food Safety V.A. Revyakina and Kh.Kh. Sharafetdinov for organizing the collection of biological material for research from healthy and sick children and adults, as well as for providing information about the their nutrition.

For citation: Sheveleva S.A., Kuvaeva I.B., Efimochkina N.R., Markova Yu.M., Prosyannikov MYu. Gut microbiome: from the reference of the norm to pathology. Voprosy pitaniia [Problems of Nutrition]. 2020; 89 (4): 35-51. DOI: : https://doi.org/10.24411/0042-8833-2020-10040 (in Russian)

References

1. Clemente J.C., Ursell L.K., Parfrey L.W., Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012; 148 (6): 1258–70. DOI: https://doi.org/10.1016/j.cell.2012.01.035

2. Sommer F., Bäckhed F. The gut microbiota – masters of host development and physiology. Nat Rev Microbiol. 2013; 11: 227–38. DOI: https://doi.org/10.1038/nrmicro2974

3. Shenderov B.A. Gut indigenous microbiota and epigenetics. Microb Ecol Health Dis. 2012; 23 (1): 171–95. DOI: https://doi.org/10.3402/mehd.v23i0.17195

4. Maksimova O.V. Assessment of intestinal microbiota in children with allergic diseases depending on body weight: Autoabstract of Diss. Moscow, 2015: 25 p. (in Russian)

5. Kuvaeva I.B. Metabolism of the body and the intestinal microflora. Moscow: Meditsina, 1976: 248 p. (in Russian)

6. Kuvaeva I.B., Ladodo K.S. Microecological and immune disorders in children: dietary correction. Moscow: Meditsina, 1991: 240 p. (in Russian)

7. Kuvaeva I.B., Petrushina L.I., Sheveleva S.A. Method for in vitro determination of microbial survival in children’s dietary products containing microorganisms and eubiotic preparations. Certificate of authorship SU 1306135 А1, 22.12.1986 (in Russian)

8. Kuvaeva I.B., Kuznetsova G.G. Antagonistic activity of microbial populations of protective flora and its relations with microbiocenosis’ characteristic and feeding factors. Voprosy pitaniia [Problems of Nutrition]. 1993; (3): 46–50. (inRussian)

9. Sheveleva S.A., Kuvaeva I.B., Fluer F.S., Kuznetsova G.G. Enterotoxin production as a diagnostic test in intestinal dysbacterioses. Voprosy pitaniia [Problems of Nutrition]. 2002; 71 (5): 23–6. (in Russian)

10. Sheveleva S. A., Batishcheva S.Yu., Kuznetsova G.G., Semenova N.N., Feklisova L.V., Isakov V.A., et al. Study composition of lactoflora of the large intestine in patients with food allergy and irritable bowel syndrome. Voprosy pitaniia [Problems of Nutrition]. 2011; 80 (2): 26–30. (in Russian)

11. Kuznetsova G.G., Trushina E.N., Mustafina O. K., Cherkashin A.V., Batishcheva S.Yu., Semenikhina V.F., et al. The influence assessment of probiotic fermented milk products on intestinal microflora, hematological indices and cellular immunity in rats. Voprosy pitaniia [Problems of Nutrition]. 2012; 81 (3): 18–23. (in Russian)

12. Markova Yu.M., Sheveleva S.A., Kodentsova V.M., Vrzhesinskaya O.A. Colon lactoflora of rats with alimentary polyhypovitaminosis and modified fat component of diet. Voprosy pitaniia [Problems of Nutrition]. 2013; 82 (2) 66–9.(in Russian)

13. Markova Yu.M., Sidorova Yu.S. Condition of protective intestinal microbiota populations under stress exposure in rats received different diets with bioactive food components Voprosy pitaniia [Problems of Nutrition]. 2015; 84 (1): 58–65.(in Russian)

14. Sheveleva S. A. Medical and biological requirements for probiotic products and biologically active food additives (BAA). Infektsionnye bolezni [Infectious Diseases]. 2004; 2 (3): 8691. (in Russian)

15. Pogozheva А.V., Sheveleva S.А., Markova Yu.M. Role of probiotics in nutrition of healthy and ill person. Lechashchiy vrach [Attending Physician]. 2017; (5): 67–72. URL: https://www.lvrach.ru/2017/05/15436730 (in Russian)

16. Sheveleva S. A. Probiotics in the food industry: regulatory framework, prospects. Pererabotka moloka [Processing of Milk]. 2018; (10): 30–4. (in Russian)

17. Vlasova A.V., Isakov V.A., Pilipenko V.I., Sheveleva S.A., Markova Yu.M., Polyanina A.S., et al. Methanobrevibacter smithii in irritable bowel syndrome: aclinical and molecular study. Terapevticheskiy arkhiv [Therapeutic Archive]. 2019; 91 (8): 47–51. DOI: https://doi.org/10.26442/00403660.2019.08.000383 (in Russian)

18. Mills S., Stanton C., Lane J.A., Smith G.J., Ross R.P. Precision nutrition and the microbiome, Part I: Current state of the science. Nutrients. 2019; 11 (4): 1–45. DOI: https://doi.org/10.3390/nu11040923

19. Perz A.I., Giles C.B., Brown C.A., Porter H., Roopnarinesingh X., Wren J.D. MNEMONIC: MetageNomic Experiment Mining to create an OTU Network of Inhabitant Correlations. BMC Bioinformatics. 2019; 20 (2): 96. DOI: https://doi.org/10.1186/s12859-019-2623-x

20. Ley R.E., Peterson D.A., Gordon J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006; 124 (4): 837–48. DOI: https://doi.org/10.1016/j.cell.2006.02.017

21. Methé B.A., Nelson K.E., Pop M., et al. A framework for human microbiome research. Nature. 2012; 486 (7402): 215–21. DOI: https://doi.org/10.1038/nature11209

22. Ehrlich S.D.; MetaHIT Consortium. MetaHIT: The European Union Project on metagenomics of the human intestinal tract. In: K. Nelson (ed.). Metagenomics of the Human Body. New York, NY: Springer, 2011: 307–16. DOI: https://doi.org/10.1007/978-1-4419-7089-3_15

23. González A., Vázquez-Baeza Y., Knight R. SnapShot: the human microbiome. Cell. 2014; 158 (3): 690–0.e1. DOI: https://doi.org/10.1016/j.cell.2014.07.019

24. Lloyd-Price J., Abu-Ali G., Huttenhower C. The healthy human microbiome. Genome Med. 2016; 8 (1): 51. DOI: https://doi.org/10.1186/s13073-016-0307-y

25. Qin J., Li R., Raes J., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010; 464: 59–65. DOI: https://doi.org/10.1038/nature08821

26. Zhang W., Li J., Lu S., et al. Gut microbiota community characteristics and disease-related microorganism pattern in a population of healthy Chinese people // Sci. Rep. 2019. Vol. 9. Article ID 1594. DOI: https://doi.org/10.1038/s41598-018-36318-y

27. Huse S.M., Ye Y., Zhou Y., Fodor A.A. Core human microbiome as viewed through 16S rRNA sequence clusters. PLoS One. 2012; 7 (6): e34242. DOI: https://doi.org/10.1371/journal.pone.0034242

28. Zhernakova A., Kurilshikov A., Bonder M.J., Tigchelaar E.F., Schirmer M., Vatanen T., et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016; 352 (6285): 565–9. DOI: https://doi.org/10.1126/science.aad3369

29. Ruggiero M.A., Gordon D.P., Orrell T.M., Bailly N., Bourgoin T., Brusca R.C., et al. A higher level classification of all living organisms. PLoS One. 2015; 10 (4): e0119248. DOI: https://doi.org/10.1371/journal.pone.0119248

30. Vemuri R., Shankar E.M., Chieppa M., Eri R., Kavanagh K. Beyond just bacteria: functional biomes in the gut ecosystem including virome, mycobiome, archaeome and helminthes. Microorganisms. 2020; 8 (4): 483. https://doi.org/10.3390/microorganisms8040483

31. Xu Z., Knight R. Dietary effects on human gut microbiome diversity. Br J Nutr. 2015; 113 (S1): S1–5. DOI: https://doi.org/10.1017/S0007114514004127

32. Sitkin S.I., Vakhitov T.Ya., Tkachenko E.I., Oreshko L.S., Zhigalova T.N., Radchenko V.G., et al. Gut microbiota in ulcerative colitis and celiac disease. Eksperimental’naya i klinicheskaya gastoenterologiya [Experimental and Clinical Gastroenterology]. 2017; (1): 8–30. DOI: https://www.nogr.org/jour/article/view/359 (in Russian)

33. Wexler A.G., Goodman A.L. An insider’s perspective: Bacteroides as a window into the microbiome. Nat Microbiol. 2017; 2 (5): 1–11. DOI: https://doi.org/10.1038/nmicrobiol.2017.26

34. Dominguez-Bello M.G., Godoy-Vitorino F., Knight R., Blaser M.J. Role of the microbiome in human development. Gut. 2019; 68 (6): 1108–14. DOI: http://dx.doi.org/10.1136/gutjnl-2018-317503

35. Ottman N., Smidt H., de Vos W.M., Belzer C. The function of our microbiota: who is out there and what do they do? Front Cell Infect Microbiol. 2012; 2: 104. DOI: http://dx.doi.org/10.3389/fcimb.2012.00104

36. Shafquat A., Joice R., Simmons S. L., Huttenhower C. Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends Microbiol. 2014; 22 (5): 261–6. DOI: https://doi.org/10.1016/j.tim.2014.01.011

37. Blaser M.J. Harnessing the power of the human microbiome. Proc Natl Acad Sci USA. 2010; 107 (14): 6125–6. DOI: https://doi.org/10.1073/pnas.1002112107

38. Koh A., De Vadder F., Kovatcheva-Datchary P., Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016; 165 (6): 1332–45. DOI: https://doi.org/10.1016/j.cell.2016.05.041

39. Boets E., Gomand S.V., Deroover L., Preston T., Vermeulen K., De Preter V., et al. Systemic availability and metabolism of colonicderived shortchain fatty acids in healthy subjects: a stable isotope study. J Physiol. 2017; 595 (2): 541–55. DOI: https://doi.org/10.1113/JP272613

40. Cani P.D., Van Hul M., Lefort C., Depommier C., Rastelli M., Everard A. Microbial regulation of organismal energy homeostasis. Nat Metab. 2019; 1 (1): 34–46. DOI: https://doi.org/10.1038/s42255-018-0017-4

41. Shortt C., Hasselwander O., Meynier A., Nauta A., Fernández E.N., Putz P., et al. Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. Eur J Nutr. 2018; 57 (1): 25–49. DOI: https://doi.org/10.1007/s00394-017-1546-4

42. Yatsunenko T., Rey F.E., Manary M.J., Trehan I., Dominguez-Bello M.G., Contreras M., et al. Human gut microbiome viewed across age and geography. Nature. 2012; 486 (7402): 222–7. DOI: https://doi.org/10.1038/nature11053

43. Sitkin S.I., Tkachenko E.I., Vakhitov T.Y. Metabolic dysbiosis of the gut microbiota and its biomarkers. Eksperimental’naya i klinicheskaya gastoenterologiya [Experimental and Clinical Gastroenterology]. 2015; (12): 6–29. (in Russian)

44. Ivanova E.V. The role of bifidoflora in the associative symbiosis of the human intestinal microbiota: Autoabstract of Diss. Orenburg, 2018: 44 p. (inRussian)

45. Ahern P.P., Maloy K.J. Understanding immune–microbiota interactions in the intestine. Immunology. 2019; 159 (1): 4–14. DOI: https://doi.org/10.1111/imm.13150

46. Salonen A., de Vos W. M. Impact of diet on human intestinal microbiota and health. Annu Rev Food Sci Technol. 2014; 5: 239–62. DOI: https://doi.org/10.1146/annurev-food-030212-182554

47. Varda-Brkić D., Vesna T., Lidija Ž-S., Branka B. The human microbiome in health and disease. In: V. Gašparović (ed.). Signa Vitae; Croatian International Symposium on Intensive Care Medicine. Brijuni, Hrvatska, 2017: 42–3. URL: https://www.bib.irb.hr/928447

48. Grigg J.B., Sonnenberg G.F. Host-microbiota interactions shape local and systemic inflammatory diseases. J Immunol. 2017; 198 (2): 564–71. DOI: https://doi.org/10.4049/jimmunol.1601621

49. Popenko A.S. Bioinformatic study of the taxonomic composition of the human intestinal microbiota : Autoabstract of Diss. Moscow, 2014: 140 p. (in Russian)

50. Tyakht A.V., Kostryukova E.S., Popenko A.S., Belenikin M.S., Pavlenko A.V., Larin A.K., et al. Human gut microbiota community structures in urban and rural populations in Russia. Nat Commun. 2013; 4: 2469. DOI: https://doi.org/10.1038/ncomms3469

51. Tyakht A.V. Functional analysis of the human intestinal metagenome: Diss. Moscow, 2014: 131 p. (in Russian)

52. Klimenko N.S., Tyakht A.V., Popenko A.S., Vasiliev A.S., Altukhov I.A., Ischenko D.S., et al. Microbiome responses to an uncontrolled short-term diet intervention in the frame of the citizen science project. Nutrients. 2018; 10 (5): 576. DOI: https://doi.org/10.3390/nu10050576

53. Almeida A., Mitchell A.L., Boland M., Forster S.C., Gloor G.B., Tarkowska A., et al. A new genomic blueprint of the human gut microbiota. Nature. 2019; 568: 499–504. DOI: https://doi.org/10.1038/s41586-019-0965-1

54. Kashtanova D.A., Tkacheva О.N., Popenko A.S., Tyakht A.V., Alexeev D.G., Kotovskaya Yu.V., et al. Gut microbiota and its relations with cardiovascular risk factors in almost healthy inhabitants of Moscow and Moscow Region. C Kardiovaskulyarnaya terapiya i profilaktika [Cardiovascular Therapy and Prevention]. 2017; 16 (3): 56–61. DOI: https://doi.org/10.15829/1728-8800-2017-3-56-61 (in Russian)

55. Amerkhanova A.M. Scientific-industrial development of new synbiotic drugs and clinical and laboratory assessment of their effectiveness: Autoabstract of Diss. Moscow, 2009: 48 p. (in Russian)

56. Minushkin O.N., Ardatskaya M.D. (comp.) Dysbacteriosis (dysbiosis) of the intestine: modern understanding, diagnosis and therapeutic correction. Educational and methodical manual. Moscow: Educational and Scientific Medical Center of the Administrative Department of the President of the Russian Federation of the Russian Federation, 2008: 50 p. (in Russian)

57. Zatevalov A.M., Selkova E.P., Gudova N.V., Oganesyan A.S. Age-related changes in production of short-chain fatty acids by gut microbiome in patients without gastroenterological diseases. Al’manakh klinicheskoy meditsiny [Almanac of Clinical Medicine]. 2018; 46 (2): 109–17. DOI: https://doi.org/10.18786/2072-0505-2018-46-2-109-117 (in Russian)

58. Kurmangulov A.A., Dorodneva E.F., Isakova D.N. Functional activity of intestinal microbiota with metabolic syndrome. Ozhirenie i metabolism [Obesityand Metabolism]. 2016; 13 (1): 16–9. DOI: https://doi.org/10.14341/OMET2016116-19 (in Russian)

59. Verbeke K.A., Boobis A.R., Chiodini A., Edwards C.A., Franck A., Kleerebezem M., et al. Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr Res Rev. 2015; 28 (1): 42–66. DOI:https://doi.org/10.1017/S0954422415000037

60. Orlova N.G. Enzymes and immune proteins of the gastrointestinal tract in children with various clinical manifestations of food allergy. Diss. Moscow, 1986: 131 p. (in Russian)

61. Bagryantseva O.V., Kalamkarova L.I., Rokutova A.V., Aznametova G.K., Idrisova R.S. Diagnosis of intestinal dysbiosis by the spectrum of fecal amino acids. Zhurnal mikrobiologii, epidemiologii i immunobiologii [Journal ofMicrobiology, Epidemiology and Immunobiology]. 1999; (4): 67–9. (in Russian)

62. Lavelle A., Hoffmann T.W., Pham H.P., Langella P., Guédon E., Sokol H. Baseline microbiota composition modulates antibiotic-mediated effects on the gut microbiota and host. Microbiome. 2019; 7 (1): 1–13. DOI: https://doi.org/10.1186/s40168-019-0725-3

63. Kafarskaya L.I., Shunikova M.L., Efimov B.A., Shkoporov A.N., Golubtsova Yu.M., Sigova Yu.A. Features of microflora formation in young children and its correction with probiotics. Pediatricheskaya farmakologiya [Pediatric Pharmacology]. 2011; 8 (2): 94–8. URL: https://www.pedpharma.ru/jour/article/view/1228?locale=en_US (in Russian)

64. Kuvaeva I.B. Characteristics of the functional state of the microecological and immunological system in children in health and disease. In: Theoretical and Clinical Aspects of Nutrition Science. Moscow, 1985; (4): 132–46. DOI: https://doi.org/10.1002/food.19870310534 (in Russian)

65. Kuvaeva I.B., Orlova N.G., Borovik T.E., Veselova O.L. Microecology and local immune and nonspecific defensive proteins depending of different nutrition. Nahrung. 1987; 31 (5/6) 457–63.

66. Mariat D., Firmesse O., Levenez F., Guimaraes V., Sokol H., Dore J., et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009; 9 (9): 123. DOI: https://doi.org/10.1186/1471-2180-9-123

67. Donovan S.M., et al. Host-microbe interactions in the neonatal intestine: role of human milk oligosaccharides. Adv Nutr. 2012; 3 (3): 450S–5S. DOI: https://doi.org/10.3945/an.112.001859

68. Cox L.M., Yamanishi S., Sohn J., Alekseyenko A.V., Leung J.M., Cho I., et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014; 158 (4): 705–21. DO: https://doi.org/10.1016/j.cell.2014.05.052

69. Bashiardes A., Godneva A., Elinav E., Segal E. Towards utilization of the human genome and microbiome for personalised nutrition. Curr Opin Biotechnol. 2018; 51: 57–63. DOI: https://doi.org/10.1016/j.copbio.2017.11.013

70. Heshiki Y., Vazquez-Uribe R., Li J., et al. Predictable modulation of cancer treatment outcomes by the gut microbiota. Microbiome. 2020; 8: 28. DOI: https://doi.org/10.1186/s40168-020-00811-2

71. Tkach S.M., Dorofeeva A.A. The ratio of the main phylotypes of the intestinal microbiota in patients with type 2 diabetes mellitus. Klіnіchna endokrinologіya ta endokrinna khіrurgіya [Clinical Endocrinology and Endocrine Surgery]. 2018; (3): 7–14. DOI: https://doi.org/10.24026/1818-1384.3(63).2018.142668 (in Ukraine)

72. Egshatyan L.V., Tkacheva O.N., Alexeev D.G., Tyakht A.V., Popenko A.S., Kostryukova E.S., et al. Gut microbiota composition in patients with different body weight. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya [Clinical Microbiology and Antimicrobial Chemotherapy]. 2016; 18 (3): 212–25. URL: https://cyberleninka.ru/article/n/osobennosti-mikrobioty-kishechnika-u-patsientov-s-razlichnoy-massoy-tela (date of access May 15, 2020) (in Russian)

73. Kashtanova D.A., Tkacheva O.N., Kotowska Yu.V., Popenko A.C., Tyakht A.V., Alekseev D.G., et al. The composition of the intestinal microbiota from healthy residents of Moscow and Moscow region with obesity. 2018; (6): 29–35. URL: https://cyberleninka.ru/article/n/sostav-mikrobioty-kishechnika-u-otnositelno-zdorovyh-zhiteley-moskvy-i-moskovskoy-oblasti-s-ozhireniem (date of access May 15, 2020) (in Russian)

74. Starostina M.A., Afanazieva Z.A., Gubaeva M.S., Ibragimova N.R., Sacmarova L.I. Colon biocoenosis in patients with colorectal cancer. Prakticheskaya meditsina [Practical Medicine]. 2012; 6 (61): 97–9. URL: https://cyberleninka.ru/article/n/biotsenoz-kishechnika-u-bolnyh-kolorektalnym-rakom (date of access May 15, 2020) (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»